kongen kongen
首页
导航站
  • 学习教程

    • Opencv教程
    • C++基础教程
    • C++_Primer教程
    • CUDA编程
  • Opencv
  • CNN
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 面试题库

    • HTML
    • CSS
    • jQuery
    • Vue
    • 零碎
  • 面试心得

    • 杂言碎语
  • 十架道路

    • 十架七言系列
    • 基督徒生活观
    • 上帝的蓝图
  • 摘抄收录

    • ☆ 励志鸡汤
    • ❀ 人间烟火
  • 读书笔记

    • 《小狗钱钱》
    • 《穷爸爸富爸爸》
    • 《聪明人使用方格笔记本》
  • 学习
  • 面试
  • 心情杂货
  • 友情链接
关于
  • 网站
  • 资源
  • Vue资源
  • 分类
  • 标签
  • 归档
GitHub (opens new window)

Kongen

你好呀(✪ω✪)
首页
导航站
  • 学习教程

    • Opencv教程
    • C++基础教程
    • C++_Primer教程
    • CUDA编程
  • Opencv
  • CNN
  • 技术文档
  • GitHub技巧
  • Nodejs
  • 博客搭建
  • 面试题库

    • HTML
    • CSS
    • jQuery
    • Vue
    • 零碎
  • 面试心得

    • 杂言碎语
  • 十架道路

    • 十架七言系列
    • 基督徒生活观
    • 上帝的蓝图
  • 摘抄收录

    • ☆ 励志鸡汤
    • ❀ 人间烟火
  • 读书笔记

    • 《小狗钱钱》
    • 《穷爸爸富爸爸》
    • 《聪明人使用方格笔记本》
  • 学习
  • 面试
  • 心情杂货
  • 友情链接
关于
  • 网站
  • 资源
  • Vue资源
  • 分类
  • 标签
  • 归档
GitHub (opens new window)
  • OpenCV简介

  • OpenCV中的 Gui特性

  • 核心操作

  • OpenCV中的图像处理

    • 改变颜色空间
    • 图像的几何变换
    • 图像阈值
    • 图像滤波
    • 形态变换
    • 图形梯度
      • 目标:
      • 理论
        • 1. Sobel和Scharr
        • 2. Laplacian算子
      • 代码实现
      • 一个重要的事情
    • Canny边缘检测
    • 图像金字塔
    • 轮廓:入门
    • 轮廓特征
    • 轮廓属性
    • 轮廓:更多函数
    • 轮廓:层次结构
    • 直方图1:查找,绘画,分析
    • 直方图2:均衡直方图
    • 直方图3:2D直方图
    • 反投影直方图
    • 傅里叶变换
    • 模板匹配
    • 霍夫线变换
    • 霍夫圆变换
    • 基于GrabCut算法的交互式前景提取
    • 基于分水岭算法的图像分割
  • 特征检测和描述

  • 视频分析

  • 相机校准和3D重建

  • 机器学习

  • 计算摄影

  • 目标检测

  • Opencv基础原理
  • OpenCV中的图像处理
kongen
2019-06-11
目录

图形梯度

# 目标:

  • 查找图像梯度,边缘等
  • 学习函数:cv.Sobel(),cv.Scharr(),cv.Laplacian()

# 理论

OpenCV提供三种类型的梯度滤波器或高通滤波器,Sobel,Scharr和Laplacian。

# 1. Sobel和Scharr

Sobel算子是高斯联合平滑加微分运算,因此它更能抵抗噪声。你可以指定要采用的导数的方向,垂直或水平(yorder和xorder),你还可以通过参数ksize指定卷积核的大小。如果ksize = -1,则使用3x3的Scharr滤波器,其结果优于3x3的Sobel滤波器。请参阅所用卷积核的文档。

# 2. Laplacian算子

它的计算由关系给出的图像的拉普拉斯(Laplacian)算子,$$ \Delta src= \frac{\partial ^{2}src}{\partial x^{2}}+ \frac{\partial ^{2}src}{\partial y^{2}} $$,其中使用Sobel导数找到每个导数。 如果ksize = 1,则使用以下卷积核进行过滤:

$$kernel=\begin{bmatrix} \ 0\ \ \ \ 1\ \ \ \ 0\ \ 1\ -4\ \ 1\ \ 0\ \ \ \ 1\ \ \ \ 0 \end{bmatrix}$$

# 代码实现

下面的代码显示了单个图表中的所有运算符,所有卷积核都是5x5大小。输出图像的深度为-1,以获得np.uint8类型的结果。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('dave.jpg',0)

laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

窗口将如下图显示:

image22

# 一个重要的事情

在我们的上一个示例中,输出数据类型为cv.CV_8U或np.uint8,但是这有一个小问题,将黑到白转换视为正斜率(它具有正值),而将白到黑转换视为负斜率(它具有负值)。因此,当你将数据转换为np.uint8时,所有负斜率都为零。简单来说,你丢掉了所有的边界。

如果要检测两个边,更好的选择是将输出数据类型保持为某些更高的形式,如cv.CV_16S,cv.CV_64F等,取其绝对值,然后转换回cv.CV_8U。下面的代码演示了水平Sobel滤波器的这个过程以及结果的差异。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('box.png',0)

# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)

# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.absolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)

plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])

plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

窗口将如下图显示: image23

编辑 (opens new window)
形态变换
Canny边缘检测

← 形态变换 Canny边缘检测→

最近更新
01
附录L_CUDA底层驱动API
02-08
02
附录K_CUDA计算能力
02-08
03
附录J纹理获取
02-08
更多文章>
Theme by Vdoing | Copyright © 2024-2025 Kongen | MIT License
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×